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Botnets – networks of machines infected with malicious software – are widely regarded 

as a critical security threat. Measures that directly address the owners of the infected 

machine end users are useful, but have proven insufficient to reduce the overall problem. 

Recent studies have shifted attention to key intermediaries – most notably, Internet 

Service Providers (ISPs) – as control points for botnet activity. Surprisingly little 

empirical information is available to assess the claim that ISPs are an important control 

point, as well as related claims, for example, that large ISPs are worse cybercitizens than 

smaller ones. This paper is a first effort to go beyond generalized arguments by 

dissecting the diversity of ISPs and the number of infected machines in their networks. As 

most of the current spam is sent through botnets, the origin of spam messages provides us 

with a proxy for detecting infected machines. Using a global dataset of 138 million 

unique IP addresses that connected to a spam trap in the period 2005-2008, we have 

analyzed in detail the geographic patterns, time trends, and differences at the level of 

countries and ISPs. This data underlines the key position of ISPs as intermediaries. For 

example, in our dataset just 10 ISPs account for around 30 percent of all unique IP 

addresses sending spam worldwide; 50 ISPs account for over half of all sources. For the 

first time, the patterns in infected machines are connected to other data, such as the size 

of the ISPs and the country in which they are located. Using bivariate and multivariate 

statistical approaches we investigate empirically the effects of country-level policy 

measures on the number of unique IP addresses sending spam at the ISP level. The data 

reveals wide differences between ISPs in the relative number of infected machines, 

sometimes up to three orders of magnitude. Whereas the overall number of infected 

machines is largely driven by the size of the user base, we also find limited evidence that 

public policies to improve cybersecurity have the desired mitigating effects. Our findings 

confirm some of the claims made in the research literature but refute others. 
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Background 

 

The internet economy is highly dependent on information and network security. 

Estimates of the direct damage caused by internet security incidents vary wildly, but 

typically range in the tens of billions of US dollars per year for the U.S. alone (e.g., US 

GAO 2007; Bauer et al. 2008). In addition, all stakeholders in the information and 

communication system incur indirect costs of possibly even larger magnitude, including 

costs of prevention. While this damage is related to a wide variety of threats, the rise of 

malicious software („malware‟) and botnets are seen as a, if not the, most urgent security 

threat we currently face.  

 

If recent estimates are correct, around 5 percent of all machines connected to the Internet 

may be infected with malware (BBC News 2007; House of Lords 2007; Moore et al. 

2009). The fact that the owners of these machines often do not know their machines are 

compromised is part of the problem. Malware may be distributed and used in many ways, 

including email messages, USB devices, infected websites, malicious advertising, and 

browser vulnerabilities (Jakobsson and Zulfikar 2008). 

 

The massive number of compromised machines has allowed the emergence of so-called 

„botnets‟ – networks of thousands or even millions of infected machines that are remotely 

controlled by a „botnet herder‟ and used as a platform for attacks as well as fraudulent 

and criminal business models, such as the sending of spam and malicious code, the 

hosting of phishing sites, to commit click fraud, and the theft of confidential information. 

 

While originating in criminal behavior, the magnitude and impact of the malware threat is 

also influenced by the decisions and behavior of legitimate market players such as 

Internet Service Providers (ISPs), software vendors, e-commerce companies, hardware 

manufacturers, registrars and, last but not least, end users. As security comes at a cost, 

tolerating some level of insecurity is economically rational. Market players make their 

decision based on the perceived costs and benefits of a course of action. In many markets 

these benefits also reasonably reflect the resource costs and benefits of a course of action 

to society at large. However, economic research and policy analysis have identified 

situations in which this correspondence is weakened and systematic gaps between private 

and social costs and benefits of security exist, a situation for which the term 

“externalities” is used.  

 

Botnet mitigation by Internet Service Providers 

 

Recent research suggests that infected end user machines, in particular those of home 

users and small and medium-size enterprise (SME) users, are a key source of security 

externalities (Van Eeten and Bauer 2008). In contrast to larger corporate users, these 

groups often do not select desirable levels of protection.  

 

Measures that address end users directly – including awareness raising and information 

campaigns – are useful, but they have proven to be insufficient to reduce the overall 

problem. Recent studies have therefore shifted attention to key intermediaries, most 



3 

 

notably, ISPs – in the sense of access providers, not providers of hosting or other services. 

As access providers to end users, they form, to some extent, a natural control point for the 

effects of infected machines. Anderson et al. (2008, pp. 50-54) argue that liability for 

infected machines should be assigned to the ISPs, rather than to the consumers who own 

the machines. The authors also propose to impose statutory damages on ISPs that do not 

respond promptly to requests for the removal of compromised machines.  

 

Of course, the fact that ISPs can potentially mitigate this threat, does not mean that they 

should mitigate it. They are not the source of the externality and they have to bear 

substantial direct and indirect costs if they do internalize the externalities of their 

customers. Nevertheless, in a variety of countries, ISPs are now explicitly assuming some 

responsibility for botnet mitigation. Industry collaborative efforts like the Internet 

Engineering Taskforce (IETF) and the Messaging Anti-Abuse Working Group 

(MAAWG) have prepared sets of best practices for the remediation of bots in ISP 

networks. Under pressure from the government, Australia‟s largest ISPs are preparing a 

voluntary code of conduct that includes contacting infected customers and filtering their 

connection.  

 

Within the OECD, other countries have indicated they are pursuing similar lines of action. 

A related initiative in Germany is the establishment of a government-funded call center to 

which ISPs can direct customers in need of support to disinfect their machines. The 

largest ISPs in the Netherlands – with an aggegate market share of over 90 percent – have 

entered into a covenant that expresses their commitment to mitigate botnet activity in 

their own networks. They claim that their organizations already have practices in place 

where they contact and in some cases quarantine customers whose machines are infected 

with malware. While this may be true, there is currently no data available that indicates 

the scale on which these practices are being carried out.  

 

Scale is critical, however. There are indications that ISPs only deal with a fraction of the 

infected machines in their networks. For example, in an earlier study we found that a 

large ISP with over four million customers contacted around 1,000 customers per month 

(Van Eeten and Bauer 2008, p. 29). Typical estimates of security researchers put the 

number of infected machines at around five percent of all connected machines at any 

point in time (Moore et al. 2009, p. 5). This would translate into about 200,000 infected 

machines for this specific ISP. Even if we reduce the estimated infection rate to one 

percent, that still implies 40,000 infected machines. This stands in stark contrast to the 

1,000 customers that the ISP claimed to be contacting – even when we optimistically 

assume that all contacted customers either willing and able to clean up their infected 

machine or are being quarantined. 

 

To reiterate: We are not claiming that ISPs should contact all the owners of infected 

machines. That is a matter for policy development to consider, taking into account the 

costs and benefits of mitigation, for ISPs, their customers, as well as society at large. We 

are simply stating that there is an urgent need to collect data, beyond the generic claims 

of ISPs that they are contacting customers and quarantining infected machines. This data 
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should inform us not only about the extent to which ISPs can mitigate, are actually 

mitigating, and how they perform relative to each other.  

 

To this end, the paper sets out to empirically answer the following questions: First, to 

what extent are ISPs critical control points for botnet mitigation? Second, to what extent 

do they perform differently relative to each other, in terms of the number of infected 

machines in their networks? Third, and last, to what extent can we explain the differences 

in performance from the characteristics of the ISPs or the environment in which they are 

located?  

 

Before turning to these questions, we first outline the research approach, as well as its 

limitations. At the heart of the research is data from a spam trap that has logged around 

138 million unique IP addresses of machines that connected to it. The raw data was 

parsed to associate IP addresses with ISPs and countries. We then examine the 

intermediairy position of ISPs. Surprisingly, in our dataset, just 50 ISPs account for half 

of all unique IP addresses of infected machines worldwide. We also explore the 

differences among ISPs in the extent in which their networks harbor infected machines. 

These differences are substantial, even when corrected for the size of the customer base 

of the ISP. To explain these differences, we employ bivariate and multivariate statistical 

approaches. Among others, using ISPs as the unit of analysis, we investigate empirically 

the effects of country-level policy measures on the number of unique IP addresses 

sending spam. We conclude with a discussion of the implications of our findings for 

current efforts to mobilize ISPs in botnet mitigation. 

 

Research approach 

 

There is no authoritative data source identifying infected machines around the world. 

Roughly, there are two types of sources: (1) data collected external to the botnet, 

identifying infected machines by their behavior, such as sending spam or participating in 

distributed denial of service attacks; (2) data collected internal to the botnet, identifying 

infected machines by intercepting communications within the botnet itself, for example 

by infiltrating the command and control infrastructure of the botnet. 

 

Each known source has its own strengths and weaknesses. The first type typically uses 

techniques such as honey pots, intrusion detection systems and spam traps. It has the 

advantage of identifying machines across a wide range of botnets. The drawback is that 

there are issues with false positives and negatives. The second type typically intercepts 

botnet communications by techniques such as redirecting traffic or infiltrating IRC 

channel communication. The advantage of this approach is accuracy: bots connecting to 

the command and control server are really infected with the specific type of malware that 

underlies the botnet. The downside is that measurement only captures infected machines 

within a single botnet. Given the fact that the number of botnets is estimated to be in the 

hundreds (Zhuang et al. 2008), such data may not be representative of the overal 

population of infected machines.  
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This study draws upon data from spam traffic – a source of the first type. The originating 

IP address of spam messages provides us with a useful source of proxy data for infected 

machines (see also Zhuang et al. 2008). The bulk of all spam messages are sent through 

botnets. Estimates published during the period under study put the figure at around 80 to 

90 percent of the total amount of spam (Ironport 2006; Messagelabs 2009). The 

originating IP address of a spam message is therefore very likely to indicate the presence 

of at least one infected machine.  

 

Our data is drawn from a spam trap – an Internet domain set up specifically to capture 

spam, whose email addresses have never been published or used to send or receive 

legimitate email traffic. In the period of 2005-2008, the trap has received 63 billion spam 

messages and incoming SMTP connections from about 138 million unique IP adresses 

worldwide.  

 

Of course, not all spam comes from infected machines and not all infected machines send 

spam. The first issue points to the risk of false positives. As mentioned above, 80 to 90 

percent of all incoming spam originates from a botnet. We have reason to believe that for 

the spam received by our trap this ratio is even higher. The trap is located at a small and 

relatively old generic top-level domain. Tactics to distribute spam through other means 

than botnets, such as “snowshoe spamming”, are typically more targeted and use fresher 

addresses, in part because these tactics are more costly than the use of botnets. In other 

words, this spam would not be captured by our trap and not lead to false positives. More 

importantly, at a later stage of the analysis, we split all spam sources in two categories, 

depending on whether the network in which the source is located belongs to an ISP or not. 

We focus our analysis on the first category, which eliminates a lot of potential false 

positives, namely spam from sources such as webmail providers, hosting providers and 

university networks. In short, we have reason to assume that the impact of false positives 

is limited. The second issue – not all infected machines send spam – points to the risk of 

false negatives, of undercounting infected machines. Our data undoubtedly suffers from 

undercounting, as do all existing data sources. That being said, sources external to botnets, 

such as spam traps, are less affected by this limitation than internal data sources, because 

they identify infected machines across a wide range of botnets. In that sense, these 

sources can be considered the most representative of the overall population. 

 

For each unique IP address that was logged by the spam trap, we looked up the 

Autonomous System Number (ASN) and the country where it was located, using the 

MaxMind geoIP database. As both ASN and geoIP information change over time, we 

used historical records to establish the orgin for the specific moment in time at which the 

message was received. We also recorded the number of spam messages sent from each 

source.
2
 This effort resulted in two time series of variables: unique IP addresses and spam 

                                                 
2
 The IP address of the incoming SMTP connection attempts were checked against a blacklist of known 

spam sources. In case the address was on the list, the connection was refused. To conservatively estimate 

how many messages these refused connections would have contributed to the spam volume, we calculated 

the daily average number of message sent per accepted connection attempt. Given that refused connections 

were from known spam sources, the number of messages these sources would have sent if the connection 

was accepted is likely to be higher than the daily average. 
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volume, both per ASN and per country. The former is more directly related to the number 

of infected machines. The latter variable is useful to balance some of the shortcomings of 

the former – a point to which we return in a moment. 

 

We have conducted extensive triangulation efforts to compare our data to the publicly 

available reports of security and anti-spam service providers. Most of the public data 

relates to the relative spam volume of countries. The commercial reports present different 

numbers, sometimes substantially different numbers. The patterns and distributions that 

we found were within the range reported by the commercial providers.  

 

We then set out to identify the ISPs to which the ASNs belonged. To the best of our 

knowledge, there is no existing database that maps ASNs onto ISPs. This is not surprising. 

Estimates of the number of ISPs vary from around 4,000 – based on the number of ASNs 

that provide transit services – to as many as 100,000 companies that self-identify as ISPs 

– many of whom are virtual ISPs or resellers of capacity of other ISPs.  

 

So we adopted a variety of strategies to connect ASNs to ISPs. First, we used historical 

market data on ISPs – wireline, wireless and broadband – from TeleGeography‟s 

GlobalComms database. We extracted the data on all ISPs in the database listed as 

operating in a set of 40 countries, namely all 30 members of the Organisation for 

Economic Co-operation and Development (OECD), plus five “accession candidates” and 

five so-called “enhanced-engagement” countries. This resulted in data on 200 ISPs (see 

Appendix 1).  

 

The process of mapping ASNs to ISPs was done manually. First, using the GeoIP data, 

we could identify which ASNs where located in each of the 40 countries. ASNs with one 

percent of their IP addresses mapped to one of the 40 countries were included in our 

analysis. Next, we listed all ASNs in a country that were above a threshold of 0.5 percent 

of total spam volume for that country.  

 

We then checked the ASNs on this list against the list of ISPs in that country, as per the 

TeleGeography database. We used historical WHOIS records for each ASN to lookup its 

name and then consulted a variety of sources to see which, if any, of the TeleGeography 

operators it matches. In many cases, the mapping was straightforward. In other cases, 

more information was needed – for example, in case of ASNs of ISPs that had since been 

acquired by another ISP. In those cases, we mapped the ASN to its current owner.
3
  

 

While we believe this to be a robust approach to answer our empirical questions, it has 

certain limitations – most notably, the effects of Network Address Translation (NAT), 

dynamic IP addresses with short lease times and port 25 blocking. The question is how 

these practices affect the number of machines that are represented by a unique IP address. 

                                                 
3
 We mapped ASNs by going down the list of top spam-sending ASNs in each country, ranked by volume, 

until one of the following conditions was met: (1) 95 percent of the spam originating from that country had 

been covered; or (2) the number of ASNs covered is five times the number of ISPs in that country, as listed 

in the TeleGeography database; or (3) the next ASN contributes less than 1 percent of spam originating 

from that country and less than 0.01 percent of spam worldwide. 
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NAT means sharing a single IP address among a number of machines. This potentially 

underrepresents the number of infected machines, as they all show up as a single address. 

Dynamic IP addresses with short lease times implies that a single machine will have 

multiple IP addresses over time. This overrepresents the number of infected machines. 

Both of these practices counteract each other, to some extent. This limits the bias each of 

them introduces in the data, but this does not happen in a consistent way across different 

networks. Earlier research by Stone-Gross et al. (2009) has demonstrated that in different 

countries, there are different ratios of infected machines to unique IP addresses – the so-

called “churn rates”.  

 

We have two ways to robustly control for the potential bias that these churn rates 

introduce in our data. First, we look at the volume of spam in addition to the number of 

unique sources. If there are many machines behind a single IP address, the spam volume 

should be relatively high, even if it looks like a single source. If there is one machine 

behind many IP addresses, the spam volume should be relatively low. We have calculated 

the ratio of spam volume to unique sources in our data. The Spearman correlation 

between these ratios and the churn rates reported by Stone-Gross et al. (2009) is very 

high, namely -0.88. This suggests that spam volume can control for churn. A second way 

to control for it is by calculating the daily averages of the number of unique sources for 

ISPs. Research by Moore et al. (2002) found that, because of DCHP churn, IP addresses 

are not an accurate measure the number of infected machines on timescales longer than 

24 hours. We therefore ran all our analysis also using the daily averages and found that 

all patterns discussed below are consistent with daily averages. 

 

For all the analyses we discuss in this paper, we have always checked whether the pattern 

we found also persisted when using both of these controls. For the sake of brevity, we 

focus our discussion on the number of unique sources. When spam volume or the daily 

averages show a different pattern, we explicitly include it in the discussion. Where they 

are not mentioned, they are consistent with the findings as reported here. 

 

A final limitation is the use of port 25 blocking by ISPs. The effect of port blocking is 

that infected machines can no longer directly send email to the wider internet, but have to 

go through the ISP‟s outgoing email servers. This affects both the number of sources as 

well as the spam volume. The ISP‟s network may harbor housands of infected machines, 

but they can no longer reach the spam trap directly and thus do not reveal their IP address 

through spam distribution. There is one important way in which the attackers themselves 

compensate for this problem: when the bots notice they cannot connect anymore via port 

25, they start to send spam via the ISP‟s official outgoing email servers. In various cases 

where port blocking was introduced, we saw that it led to a brief reduction of outgoing 

spam, only to return to the previous spam volume within about a month. It is difficult for 

the ISP to prevent this from happening, as each bot sends out a relatively low level of 

spam, and thus rate limits and similar controls do not pick up on it. The effect of this 

tactic is that here, too, spam volume provides the abilty to cross check our findings, to 

some extent. In other cases, port blocking is an unavoidable limitation to our data. If the 

spam volume remains consistently lower, port blocking obscures the presence of infected 

machines. That being said, the effect of the bias is not wholly unreasonable. The ISPs that 
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adopt port blocking improve their ranking in terms of botnet activity compared to those 

that don‟t – which is not without merit, given that the measure of port blocking is part of 

many guidelines on best security practices for ISPs. 

 

Are ISPs critical control points? 

 

The most important reason to focus on ISPs as intermediaries is that they are viewed as 

critical control points. To some extent, this is obvious. The ISP‟s customers can only 

send and receive traffic via the ISP, which creates a natural bottleneck to mitigate 

malicious activity of the customers‟ machines. However, there are two important 

assumptions that are rarely explicitly acknowledged. First, to what extent are infected 

machines actually located within the networks of ISPs? In other words, what about the 

machines in use by, for example, hosting providers, application service providers, 

webmail providers, university networks and corporate networks? If ISPs can only control 

a minor portion of the infected machines, it undermines the argument to focus on them, 

more than the other players, as the key intermediaries in the fight against botnets.  

 

The second assumption behind the idea to focus on ISPs as control points is that the 

burden will be put on the relevant ISPs. We are most familiar with the legitimate ISPs, 

well-known brands that together possess the bulk of the market share. These 

organizations are identifiable, reachable and stable enough to be brought into some form 

of collaborative process or under a regulatory regime. However, as security incidents 

have often pointed out, there is also a class of so-called “grey” and “rogue” ISPs. This 

class may have a disproportionate part in the impact of botnet activity. They also 

typically evade, intentionally or not, the normal processes through which collective 

action is brought about. If we stimulate ISPs to do botnet mitigation, voluntarily or 

through some type of policy measures, the burden will not fall onto this class of ISPs. In 

other words, treating ISPs as control points implicitly assumes that the problem exists for 

the most part within the networks of the legimate providers that have most of the market 

share; not in the margins of the market, which is teeming with large numbers of small 

ISPs that are often shortlived and difficult to survey, let alone reach through public 

regulation or self-regulation. 

 

As far as we know, these assumptions have never been emprically tested. Our data allows 

us to do just that. As explained above, we are working with a set of 200 ISPs in the wider 

OECD – 30 member countries and 10 associated countries. This set consists of the ISPs 

that collectively posses the bulk of the market share in these countries. We first looked at 

the portion of the total number of unique sources of spam that can be attributed to these 

ISPs. Over the period of 2005-2008, between 63-69 percent of all global sources were 

located within networks of the 200 ISPs. For spam volume, the numbers are slightly 

lower: 50-64 percent (see Figure 1). If we look at the total number of sources in the 40 

countries where the ISPs are located, that ratio is, of course, even higher: 77-82 percent. 

This confirms the first assumption, namely that the bulk of infected machines are located 

in the networks of the larger, predominantly retail ISPs – rather than hosting providers, 

corporate networks, application service providers. These appears to be little, if any, 

volatility in this pattern.  
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It is interesting to note that these ratios vary significantly across countries. On the high 

end, we have countries like Israel, Turkey and Italy, where in 2008 over 96 percent of all 

sources are located with ISPs. On the low end, we find Canada, with around 42 percent, 

which may be explained by the fact that Canada has a large hosting provider industry. 

 

It is also interesting to look at the distribution of sources within this set of 200 ISPs. That 

gives us a sense of the validity of the second assumption. If we rank the ISPs in order of 

the number of unique sources in their networks in 2008, we find that the 10 highest 

ranking ISPs account for around 30 percent of all unique sources worldwide (figure 2). 

The top 50 ISPs account for over half of all sources worldwide. In light of the fact that 

there are 30,000 ASNs and anywhere between 4,000-100,000 ISPs, this is a remarkable 

finding. We also see that the curve flattens quickly. Adding the next 150 ISPs captures 

only an additional 8 percentage points of sources worldwide. This confirms the second 

assumption.  

 

In light of the thousands of players that are involved, collective action would seem an 

almost futile pursuit, given all the typical problems of free rider behavior and weakest-

link security. For botnet mitigation, however, the task of combating infected machines 

turns out to have more manageable proportions, institutionally speaking. Our findings 

strongly suggest that the more established and visible ISPs are indeed the ones who form 

Figure 1: Percentage of sources compared to global total 
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critical control points, not the thousands of smaller players that would be difficult, if not 

impossible, to reach through collaborative or regulatory efforts.  

 

Of course, none of this is to say that improving botnet mitigation has suddenly become an 

easy task. Nor are we arguing that the same pattern holds across other types of malicious 

activity. Many types of criminal activity do, in fact, thrive because of weakest-link 

problems among ISPs – as business models such as bulletproof hosting have 

demonstrated.  

 

Do ISPs perform differently in terms of botnet mitigation? 

 

A lot has been written about the incentives of ISPs, or lack thereof, to improve security 

(House of Lords 2007; Van Eeten and Bauer 2008; Bauer and Van Eeten 2009; Moore et 

al. 2009). Various incentives have been identified, some enhancing security, others 

working against it. It is not at all clear what the net effect is of these incentives on ISP‟s 

behavior, nor whether this effect varies significantly across ISPs. Another way to frame 

this problem is to ask how much discretion ISPs have in mitigating botnets. If they are 

subject to similar incentives but have little organizational freedom to respond to them, 

then we would expect similar performance in this area. However, if they do have 

discretion and can respond differently, diverse performance outcomes will be observable. 

 

Figure 2: Percentage of sources located in top ISPs 
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The first factor to take into account is size. Our dataset includes a range of ISPs of 

varying size. In 2005, the smallest ISP had 3,000 customers and the largest 21 million 

customers, with the median at approximately 252,000. In 2008 the numbers were higher, 

with the smallest ISP showing 12,600 and the largest 44.3 million customers. The median 

in 2008 was at 500,750 customers. For some analysis, the dataset was split into small and 

large ISPs, with key statistics of the latter by about an order of magnitude higher than for 

the former group. Obviously, other things being equal, ISPs with more customers will 

experience more infections. If we look at ISP performance – as measured in number of 

unique sources and spam volume – and rank the ISPs according to their size, this 

becomes immediately visible (see figure 3 for the 2008 findings). We can see a nearly 

linear relationship, when both variables are transformed logarithmically (R
2
 is 0.43 for 

the period 2005-2008). That being said, there is still considerable variability.  

 

Across the board, we see a difference of two orders of magnitude, sometimes even higher, 

in the number of infected machines within networks of ISPs of similar sizes. This is not a 

matter of outliers. The coefficient of variation – basically the ratio of the standard 

deviation to the mean – is well above 1, both for the number of unique sources and spam 

volume. Other incentives may be country-specific, such as the cost of legal requirements 

or the cost of customer support. But even within countries we see substantial differences 

in performance. In the U.S. and Germany, for example, we still see at least one order of 

magnitude difference, often more, among ISPs of similar size (figure 3).  

Figure 3: Unique sources and number of subscribers of ISPs in the OECD (2008) 
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A third aspect is the performance of ISPs over time. Although we did not yet perform a 

detailed empirical analysis of the factors that explain differences in the dynamic response 

of ISPs to infections on their networks, we conducted an aggregate analysis of ISPs in the 

set of worst offenders. The Venn diagrams in figure 4 illustrate overlaps in the 50 worst 

performing ISPs between 2005 and 2008 both for the absolute and relative number of 

sources. There is some variation in membership in the total set and the various sub-sets. 

For example, a total of 66 ISPs were in the top 50 in one of the four years based on the 

number of infected machines and 77 ISPs were in the top 50 based on the number of 

infected machines per subscriber. However, we also observe a stable core of 34 ISPs that 

had the highest number of infected machines on their network during all four years (9 

ISPs were in the set in three years, 12 in two years, and 11 in only one year). With regard 

to infected machines per subscriber, 28 ISPs were in the set during all four years, 15 were 

in it during three years, 9 during two, and 25 during only one year.  

 

 

Figure 4: Variability in top 50 sources of spam 2005-2008 

 
 (a)  Variability in absolute (b) Variability in relative 

  number of sources  number of sources 

 

 

The size distribution of ISPs in the two core sets of poor performers throughout the entire 

time period is compatible with the overall picture gained from the statistical analyses. 

The smallest ISP with regard to absolute number of sources had about 480,000 

subscribers and the largest 44.3 million. With regard to sources per subscriber, the 

smallest ISP reported about 28,600 subscribers and the largest one 5,8 million subscribers. 

Within these sets, although there is considerable variation, larger ISPs on average did 

better than smaller ISPs. The patters remains the same when taking average daily 

numbers of sources, either in absolute or relative, per subscriber terms.  

 

All of this suggests that ISPs have significant discretion to decide how they engage in 

botnet mitigation and that their organizational incentives lead to different choices, even 

when working under a common set of institutional incentives, such as defined by the 

legal framework of a country. This point is reinforced when we look at the differences 

between countries, rather than ISPs. At the country level, our data measures the total 

spam output of ISPs and non-ISPs. As players with very different records within one 



13 

 

country are aggregated, country performance data show less variance than individual 

organization data. Consequently, at that level of analysis, the number of internet users 

explains around 70 percent of the variance in performance. As ISPs do perform very 

differently under comparable institutional incentives and economic circumstances, this 

suggests that country-level mitigation measures, while necessary, will not be sufficient 

unless they also address the organizational incentives and realign both. In the next section, 

we explore the extent to which we can explain these differences among ISPs. 

 

Explaining the differences among ISPs 

 

Advanced information and communication technologies form a highly interrelated 

ecosystem. Like other actors, ISPs respond to economic and non-economic incentives. 

Most generally speaking, incentives are the factors that individual and organizational 

decision-makers take into account. Given the highly dynamic nature of this ecosystem, 

the observations reported in the previous section could be the complex outcomes of the 

varied responses by ISPs to the problems of botnets without an underlying stable pattern. 

However, if the phenomenon had certain regularities this knowledge could be utilized to 

improve cybersecurity. We therefore formulated a simplified conceptual model of the 

ecosystem around ISPs and subjected it to empirical analysis. Figure 4 represents a 

stylized model of the factors that influence botnet activity: the security measures adopted 

by an ISP, the level and virility of cybercriminal attacks, technological factors, and user 

behavior. Other factors, such as the behavior of software vendors and registrars, also 

impact this ecosystem, but they are outside the scope of this study (see van Eeten and 

Bauer 2008 for an in-depth discussion). An ISP‟s decisions to adopt security measures 

are influenced by factors related to the institutional and organizational environments. 

These groups of factors are linked in multiple feedbacks so that they co-evolve over time. 

For example, stronger security efforts by an ISP may reduce botnet activity but also result 

in stronger efforts by cybercriminals to find new attack vectors. As our units of analysis 

are ISPs, it is important to take the national context into account. However, cybercrime is 

a transborder phenomenon and the international context is therefore also relevant. 

 

The incentive structure of a particular ISP is shaped by institutional and organizational 

factors. These two sets of factors are interrelated in many ways. For example, a 

regulation obliging an ISP to undertake certain security measures has cost implications at 

the organizational level. Likewise, the failure of ISPs to adopt a sufficient level of 

security-enhancing measures increases the likelihood that institutional responses might be 

sought. It is nonetheless useful to distinguish them, as institutional incentives can be 

designed by policy makers whereas organizational ones are typically shaped by managers 

(often in response to institutional incentives). Overall, the resulting incentive structure 

under which an ISP operates consists of a mix of contradictory forces, some increasing 

efforts to mitigate botnets (other things being equal) and others weakening them (other 

things being equal). For example, if higher botnet activity increased the risk of being 

blacklisted this constitutes a positive incentive– i.e., an incentive to improve security and 

to mitigate botnet activity. In contrast, the cost of acting against infected machines is a 

negative incentive, as higher costs reduce botnet mitigation efforts. Depending on the 
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strength of the relation between an incentive and the effort to mitigate botnet, incentives 

fall on a continuum from high-powered (strong) to low-powered (weak).  

 

The level of effort that ISPs exert on botnet mitigation depends on the relevant set and the 

relative strength of positive and negative incentives. Relevant institutional factors include 

the legal and regulatory framework in which ISPs operate, the market structure and the 

associated competitive pressures, and the conditions in related markets, e.g. for security 

technology. Relevant organizational factors include the size of the customer base, the 

organization of the abuse desk, and the cost of various security measures. Which 

incentives will be perceived as relevant by an ISP is influenced by its business model. 

Commercial ISPs will primarily respond to incentives that have direct and indirect 

implications for their bottom line. Likewise, rogue ISPs deriving most of their business 

from activities related to cyberfraud and cybercrime will also primarily respond to 

economic incentives (Van Eeten and Bauer 2008). In both cases, non-economic 

incentives, such as peer pressure and peer recognition, may play a role. These types of 

incentives are often seen to be subordinate to economic incentives. This need not be the 

case, however. When peer pressure takes the form of blacklisting, it has economic effects 

that can be quite significant, such as rising cost of customer support, when customers 

experience the effects of blacklisting and start calling their ISP. The relative weights of 

relevant incentives could be different for non-profit ISPs or cooperatives but even such 

ISPs do not have unlimited resources and will have to pay attention to economic factors. 

All ISPs will therefore be influenced by the incentives identified in Figure 4, which 

interact to jointly influence an ISP‟s botnet mitigation effort. 

 

The signs in Figure 4 refer to the direction of the incentive, other things being equal. A 

positive sign indicates that the incentive has likely a positive effect on the level of botnet 

mitigation by an ISP. The strength of an incentive is quite a different issue and may 

depend on the presence of complementary incentives. For example, laws providing a base 

for action against spammers will only be effective if they are also enforced actively. 

Likewise, the effectiveness of liability rules, which are often mentioned as a possible 

course of action, will depend on whether or not the required burden of proof can be met. 

Because such enforcement encounters great difficulties, leading legal scholars tend to be 

skeptical whether liability rules are workable (e.g., Spindler 2007). The effectiveness of 

incentives and the interaction between them will also be influenced by the national 

context. Of particular importance are the diffusion of broadband service, the income level 

of a country, the education level of the population, and the diligence of law enforcement. 

 

Agents in this ecosystem usually have an incomplete view of the relevant facts and/or of 

the consequences of particular actions and make their choices within these informational 

boundaries (“bounded rationality”). Moreover, while there will be some shared 

(“common”) information, part of the incomplete information will be asymmetrically 

distributed among the stakeholders. Agents even in otherwise similar organizations may 

therefore respond differently to the same set of institutional incentives if their knowledge 

differs. Therefore, one would expect a diverse set of responses to the institutional and 

organizational incentives under which ISPs operate. Despite this diversity of responses, 

the effect of incentives can nevertheless be systematically examined. 
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Due to data constraints, for purposes of empirical analysis, the conceptual framework 

discussed in the previous paragraphs was further simplified to a more manageable 

empirical model. No data on the number of infected machines was available. We 

approximated it with two measures: the number of unique IP addresses emitting spam 

and the total number of spam messages originating from an ISP during a specific time 

period. Drawing on the conceptual framework discussed above, a large number of 

Figure 4: Conceptual framework 
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variables that could either serve as direct measures of as proxies for the independent 

variable were used. In this paper, only variables that were seen as relevant based on the 

conceptual approach and that yielded a statistical contribution are reported. In addition, 

control variables were introduced to take factors related to technology, user behavior, and 

the national context into account. As cybercrime is a globally mobile phenomenon, we 

proceeded on the assumption that all ISPs are targeted at a comparable rate (although the 

level of botnet activity is influenced by an ISP‟s security efforts as well as other control 

factors and will thus vary). The empirical model is displayed in Figure 5.  

 

Data for the independent and control variables was collected from several sources, 

including the World Bank‟s World Development Index database, the UN Human 

Development Reports, the Software Business Alliance, and TeleGeography‟s 

GlobalComms database (see Appendix 2). Where possible, data was triangulated against 

other sources, such as the International Telecommunication Union‟s World 

Telecommunications Indicator database. In addition to the 63 billion spam messages from 

138 million unique sources, which were parsed, aggregated, and attributed to ISPs and 

countries in the way discussed above, we were able to assemble a panel of annual 

observations for 2005-2008 for 40 countries. Although we were able to gather 

considerable evidence, it was not possible to generate empirical data for all the variables 

suggested by the theoretical model forcing us to work with proxies where available. 

Figure 5: Empirical framework 
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However, in some cases, such as prices for internet access services, the empirical model 

was constrained by lack of data. 

 

Empirical findings 

 

The dynamic nature of botnets raises many methodological challenges. Three approaches, 

each with its own advantages and disadvantages, were used to test hypotheses derived 

from the theoretical framework: (1) bivariate methods, (2) multivariate methods using 

pooled data, and (3) panel data analysis. In each case, we set out to explain relative 

differences in botnet activity among the ISPs. Unless noted otherwise, we used as the 

dependent variables the number of infections per subscriber – i.e., unique sources per 

subscriber and spam volume per subscriber.
4
 

 

Bivariate analysis offers a first crude look onto the relations between independent 

variables and the proxies for botnet activity. However, it has to be kept in mind that 

bivariate statistics neglect the influence of other factors that may play a role and therefore 

may attribute too much influence to a single independent variable. They therefore grant 

only a preliminary understanding of the data structures. The robustness of findings needs 

to be checked against multivariate statistical methods. The results of this analysis are 

presented in Table 1.  

 

That ISPs (as opposed to other types of players, such as hosting providers or corporations 

operating a network with its ASN) play a central role in botnet activity was already 

discussed. Likewise, the great variability among ISPs was already discussed. In addition 

to these findings, our data indicate the following (see Asghari 2010 for a more detailed 

discussion):  

 There is a widely held belief that larger ISPs show worse security performance, as 

they face much less peer pressure. For instance, Moore, Clayton, and Anderson (2009, 

p. 10) state that “...very large ISPs are effectively exempt from peer pressure as others 

cannot afford to cut them off. Much of the world‟s bad traffic comes from the 

networks of these „too big to block‟ providers.” In contrast to this belief, our dataset 

indicates that, while larger ISPs emit more spam in absolute numbers, relative to size 

their performance is on average slightly better than that of smaller ISPs. 

 Another claim is that lower average revenue per user (ARPU) is a sign of higher 

financial pressure that might result in less attention to security. Our data suggests that 

ARPU and relative security performance are unrelated. 

 Given differences in networking technology and user base, one might hypothesize 

that cable service providers can enhance their security performance easier than DSL 

providers. Our data indicates an eight percent better lower incidence of unique 

sources for cable companies. The volume of spam, however, is similar for both types 

of providers, which might reflect that cable subscriptions have higher average 

bandwidths than DSL subscriptions. 

 Bivariate analysis indicates that countries that have joined the London Action Plan 

(LAP) have, on average, 12 percent fewer bot infections. Likewise, being a signatory 

                                                 
4
 See Appendix 3 for the descriptive statistics of the variables and Appendix 4 for the pair wise correlations 

between the independent variables. 
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to the Council of Europe‟s Convention on Cybercrime is negatively correlated with 

botnet infections. Neither of these initiatives targets botnets directly. However, one 

could argue that membership is a proxy for the overall commitment of a country‟s 

government to enhance cybersecurity – and thus of a broader set of measures 

undertaken. Earlier research by Wang and Kim (2009) provided some evidence in 

support of this effect, though they presume a somewhat tenuous direct causal link 

between the Convention and cybercrime, rather than interpreting membership of the 

Convention as a proxy variable. However, factors correlated with a country‟s 

willingness to sign these agreements could also be at work both for the Convention as 

well as the LAP. 

 A frequently stated claim is that countries with higher rates of software piracy also 

have higher botnet activity. At the bivariate level, our data supports that a moderate 

positive relation exists between piracy and botnet activity. 

 Bandwidth is often seen as enabler of malware (e.g., OECD 2009). However, our data 

does not support that claim at the bivariate level and we did not find an indication that 

increased use of broadband connections does “automatically” translate into a higher 

number of bot infections – measured either in the number unique sources or spam 

volume. 

Table 1: Bivariate test results for number of unique sources per subscriber* 

Subject Independent 
variables  

Statistical 
instrument 

N Results 
pooled, 
sources 

Results 
pooled, 
volume 

Results  

Effects of ISP 
size 

total_sub 
 
 
market_share  

Spearman’s 
rho 

N=741 sig1=0.000 
ρ  = -0.170 
 
sig2= .820 

sig1=0.000 
ρ  = -0.182 
 
sig2= .179 

Negative relation 
 
 
No relation 

Effects of 
ARPU  

rev_persub  
 

Spearman’s 
rho 

N=194 sig = 0.275 
 

sig=0.770 No relation 

Cable vs. DSL 
providers 

srv_cable  t-test N=665 sig = 0.000 
diff = .0766 

sig = 0.506 Cable providers 
have fewer sources 

Effects of 
regulation 

lap_mem  
 
 
cyberconv_mem  

t-test,  
 
 
Kruskal-
Wallis, t-test 

N=741 sig1 = 0.000 
diff = .120 
 
sig2 = 0.000 
diff = .129 

sig1 = 0.000 
diff = 33.8 
 
sig2 = 0.000 
diff = 33.6 

LAP members have 
fewer sources 
 
CC members have 
fewer sources 

Effects of 
piracy 

piracy_rate  Spearman’s 
rho 

N=740 sig = 0.000 
ρ = 0.391 

sig = 0.000 
ρ  = 0.342 

Positive relation 

Effects of 
bandwidth 

int_bpp  Spearman’s 
rho 

N=386 sig = 0.000 
ρ  = -0.232 

sig = 0.421 
 

No relation 

Effects of user 
education 

educ_ix  Spearman’s 
rho 

N=547 sig = 0.000 
ρ  = -0.381 

sig = 0.000 
ρ  = -0.261 

Negative relation 

 

* The bivariate statistical tools used are comparison of means and measures of association. In this table, sig is the 
statistical significance of the test result (values under 0.05 are considered statistically significant results); ρ is the rank 
correlation coefficient, and is a measure of the degree of association of two variables (between -1 to 1); diff is the 
difference between the averages of the two sample groups. Due to lack of normality in the dependent variable, often 
non-parametric tests were employed. 
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 Lastly, we were interested in whether higher education levels are associated with 

lower levels of botnet activity. In the bivariate analysis, a negative effect of higher 

education on botnet activity is indeed visible. 

 

To overcome the limitations of bivariate analyses, multiple regression analyses were 

conducted. With four years of information available, the data could be examined from 

different perspective (although only a few selected findings are reported here), including 

cross sectional analyses of annual data, pooled data, and panel data estimation. In a 

pooled data design, the driving methodological assumption is that the same generative 

process explains all observations, independent of the ISP and/or the year. This implies 

that parameters do not vary between the units of analysis. Although this is a strong 

assumption, in the present case, where all ISPs are subject to a relentless stream of 

attacks of a predominantly global nature, it is not entirely unrealistic. A recent study 

found that half of the detected botnets included machines in over 30 countries. Some 

botnets even control machines in over 100 countries (Zhuang et al. 2008).  

 

The relative measures of botnet activity (number of unique sources per subscriber or 

spam volume per subscriber) are more intuitive, because we want to compare ISPs. But 

the downside of using dependent variables normalized with the size of the ISP is that they 

require us to use instrument variables so as to not violate a key assumptions of the linear 

regression model. For this reason, transformations of the variables are used. Moreover, to 

gain insights into the factors driving the total number of infected machines, we first 

specified a model using the absolute number of unique sources for each ISP – 

transformed by using a log function.
5
 The double-log specification has the advantage that 

β-coefficients can be interpreted as elasticities. 

                                                 
5
 We used a logarithmic transformation because the order of magnitude of the number of subscribers is 

more important the absolute number – i.e., we would expect security practices to differ between an ISP 

Table 2: Pooled regression results for unique sources of spam (log transformed)* 

Dependent variable: 
unq_srcs_log 

   All ISPs 
      (β) 

Small ISPs 
     (β) 

Large ISPs  
    (β) 

totsub_log 0.650 ** 0.558 ** 0.428 ** 

market_sh 0.077 * -0.020  0.143 ** 

srv_cable  -0.086 ** -0.192 ** -0.010  

cyber_mem -0.068  -0.023  -0.072  

lap_mem -0.139 ** -0.125 * -0.234 ** 

educ_ix -0.024  -0.111  0.028  

piracy_rate 0.104 ** 0.102  0.165 * 

_cons 0.466 0.527 -0.498 

N 639 300 339 

R
2

adj 51.4% 36.6% 34.0% 

* ISPs were split into the two subsets based on having a total number of subscribers below or above 
395,000. The chosen cut-off point is the median number of subscribers in the pooled set of observations. 
Reported betas (β) are standardized (except _cons). Significance levels: * ≤ 0.05, ** ≤ 0.01. 
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The findings from the pooled regression analysis are presented in the second column of 

Table 2. The model explains about 51 percent of the variation among ISPs in the number 

of unique sources (49 percent when using spam volume as dependent variable). The 

model is largely congruent with the bivariate findings, except for the impact of the 

Cybercrime Convention and education, which now are found to be weaker and non-

significant. 

 

To explore the relationship between ISP size and botnet activity that was found in the 

bivariate analysis, we divided the set of ISPs into two groups: small and large ISPs. The 

results are presented in the third and fourth column of Table 2. The initial finding is 

confirmed. The elasticity of unique sources to changes in the number of subscribers is 

higher in smaller ISPs – that is, a one percent increase in the number of subscribers leads 

to a higher increase in the percentage of infected sources for small ISPs (0.56) than large 

ISPs (0.43). Simply put, smaller ISPs are, on average, doing slightly worse.  

 

The effect that cables providers have lower infection rates appears to hold primarily for 

smaller ISPs. If indeed, as we hypothesized earlier, this effect is tied to automation that 

could explain why we do not see the effect of cable versus DSL for large ISPs, as they 

are more likely to already have automation in place because of their size. The effect of 

regulatory activity – as measured by the proxy of LAP membership of the country in 

which the ISP is located – is stronger in large ISPs. This fits with the earlier observation 

that large ISPs are more within the reach of governmental efforts to improve 

cybersecurity. 

 

The next step in multivariate analysis was to model the relative performance of ISPs, i.e., 

the amount of botnet activity corrected for size of the ISP.
 6

 The results are presented in 

Table 3. This model explains about 36 percent of the variance, notwithstanding the many 

factors at play in the botnet phenomenon. However, it also clearly indicates that other 

factors are at work, pointing to the highly dynamic nature of the phenomenon – not in the 

last place because of volatile patterns caused by the attackers. An analysis of the error 

terms indicated the presence of heteroscedasticity, which weakens but does not invalidate 

the findings. It is a possible indication that other factors that are not yet included in the 

model, may be at work. 

 

As incentives typically do not work in isolation from each other, we also introduced 

interaction terms to capture the joint effects of selected factors. Interaction terms appear 

among the country level variables, indicating that they change in „configurations‟, as is 

often the case with institutional and demographic variables.  

 

                                                                                                                                                 
with 50,000 subscribers versus one with 500,000, but not between ISPs with 5 million and 5.5 million 

subscribers. 
6
 This variable was transformed using a square root function, because of the law of diminishing returns at 

work for this variable – e.g., completely infection-free ISP networks are non-existent, but as the number of 

infections goes up, it becomes increasingly difficult to add additional infections – i.e., it is all but 

impossible to achieve a 100 percent infection rate.  
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Although some of the findings differ from the simple bivariate analysis, there is also 

considerable congruence. With the exception of membership in the Cybercrime 

Convention, all variables in Table 3 are significant at the one percent level. In this model 

specification, the parameters of the total number of subscribers of the ISP, cable service 

provision status, membership in the Cybercrime Convention, and education levels of 

users all were negative, indicating that these factors mitigated botnet activity. In the 

multivariate setting, the parameter sign of the piracy rate, however, switched to negative 

and the parameter sign of LAP membership to positive. As these factors may interact 

with others, we tested several specifications of interaction effects. Of these, interactions 

of LAP membership with education and piracy generated negative parameter signs 

(indicating, for example, a botnet mitigating effect of the interaction of LAP membership 

and education but, less convincingly, also of LAP membership and piracy rate). This 

implies that some of the findings are sensitive to the specification of the model and 

therefore less robust than other findings that do not change. 

 

The third approach used panel data methods. Panel data allow taking advantage of the 

cross-sectional and time-series dimensions of the data. In other words the method takes 

advantage of the fact that data originated from different ISPs and at different points in 

time. In our case, we used a fixed effects model, which relaxes the assumption of the 

pooled data approach that one generative process drives the botnet phenomenon and 

allows ISP-specific differences. With only four years of observations, though, panel data 

estimation has inherent limitations. Moreover, variables that do not change within one 

country during the four years (e.g., institutional incentives such as LAP or Cybercrime 

Convention membership) cannot be used and are therefore dropped in the estimation 

procedure. Of the three methods, panel data estimation therefore is the most challenging 

Table 3: Pooled regression results for unique sources per subscriber (sqrt transformed)  

      Source |       SS       df       MS              Number of obs =     664 

-------------+------------------------------           F( 11,   652) =   34.68 

       Model |  12.2717863    11  1.11561693           Prob > F      =  0.0000 

    Residual |  20.9735399   652  .032168006           R-squared     =  0.3691 

-------------+------------------------------           Adj R-squared =  0.3585 

       Total |  33.2453262   663   .05014378           Root MSE      =  .17935 

 

------------------------------------------------------------------------------ 

  src_per_sq |      Coef.   Std. Err.      t    P>|t|                     Beta 

-------------+---------------------------------------------------------------- 

  totsub_log |  -.0336822   .0122981    -2.74   0.006                -.1072685 

   srv_cable |  -.4511269   .1281703    -3.52   0.000                -.9433911 

  icblXsubln |     .06528   .0229551     2.84   0.005                 .7614554 

   cyber_mem |  -.0403519   .0213033    -1.89   0.059                -.0801629 

     lap_mem |   5.055042   1.300163     3.89   0.000                 11.16164 

 piracy_rate |  -.0395952   .0137778    -2.87   0.004                -3.022274 

     educ_ix |  -3.083531   .9688927    -3.18   0.002                -.8433481 

    ilapXedu |  -5.597067   1.355777    -4.13   0.000                -11.91356 

    ilapXpir |  -.1252716   .0205351    -6.10   0.000                -11.96453 

    ieduXpir |   .0438092   .0144469     3.03   0.003                 2.782703 

ilapXeduXpir |   .1393075   .0218696     6.37   0.000                 12.18444 

       _cons |   3.535415    .938184     3.77   0.000                        . 

------------------------------------------------------------------------------ 
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approach for finding a statistical model that yields statistically significant parameter 

estimates. Table 4 presents the findings from a version that is close to the one found to fit 

the pooled data.
7
 Several variables (number of subscribers, interaction terms) show the 

same sign as in the other procedures. The coefficient for the education proxy in the panel 

approach shows a positive sign, which is incompatible with the more plausible findings in 

the other two approaches. In the case of total subscribers, the significance level is below 

the 5 percent level. Statistical significance may not be a central concern, though, because 

the ISPs in our dataset represent the lion‟s share of the ISP market in the 40 nations. 

Therefore, our data is nearly a complete enumeration of the markets rather than a sample. 

In this case, the parameter estimates reflect the data structures in the empirical universe 

under investigation. In as far as ISPs are concerned, it is not necessary to make inferences 

from a subset to the whole phenomenon. Consequently, significance levels lose in 

importance when interpreting the findings. 

 

                                                 
7
 The model explains only about 10 percent of the variance in the dependent variable overall, 12 percent of 

the variance between ISPs, and 7 percent of the variance within each of the 175 ISPs for which all data 

were available. Given the wide diversity of the ISPs, the short panel of only four years of observations, and 

the highly dynamic phenomenon of spam, this is not surprising. Other model specifications explain a higher 

share of the variance but often do not yield statistically significant coefficients. If we were to interpret the 

data as an enumeration, this would be acceptable. In these model runs, we can explain up to 49 percent of 

the overall variance of the total number of spam messages, with the size of the user base typically the most 

important explanatory variable. 

Table 4: Panel regression results for unique sources per subscriber (sqrt transformed) 
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Table 5 summarizes and compares the findings from the different approaches. 

Explanatory variables which show the same direction of influence on the dependent 

variable in all three approaches can be considered more robust than independent variables 

for which the findings differ (shaded in Table 5). In several cases, a variable could not be 

used in all three specifications, for example, because it did not vary within on country 

during the four years under consideration. Moreover, interaction terms do not make sense 

in bivariate statistics. In these cases, consistency means that the variable show the same 

directional effect in the remaining two approaches. Such defined consistency is 

observable for the size of ISPs, for whether an ISP uses a cable rather than a DSL 

platform, membership in the cybercrime convention, and the various interaction terms 

between LAP membership and education as well as LAP membership and piracy. In the 

case of the piracy rate and the education proxy results are mixed, with one method‟s 

results deviating from the others. We interpret this as a less robust finding. 

 

Conclusions 

 

This paper set out to address a number of questions. First, our findings support the view 

that ISPs are indeed critical control points for botnet mitigation. In addition, a more 

specific pattern was uncovered. While the class of ISPs includes anywhere between 4,000 

and 100,000 actors, we found that the distribution of infected machines is highly 

asymmetrical. Just 50 ISPs consistently accounted for over half of all infected sources. 

Such a skewed distributions is a familiar pattern for many Internet-related phenomemon. 

However, its presence in this situation is less likely than it may appear, as ISPs for 

consumers and SMEs are oriented towards national markets, not global ones.  

 

From a policy perspective, this is a relevant finding. Even if ISPs were to be a more 

effective control point compared to the hundreds of millions of end user machines, it 

would be extremely difficult to bring about collective action among many thousands of 

actors located in over a hundred countries. Our data suggests the task may have more 

manageable proporties. Not only is the number of actors needed to create an impact on 

botnets smaller than expected, the most critical actors are also the easiest to target with 

governmental interventions or some form of public-private sector cooperation, as they are 

Table 5: Summary empirical results for unique sources per subscriber* 

 bivariate pooled panel  

total_sub_log negative negative negative 

srv_cable cable lower negative --- 

lap-mem negative positive --- 

cyberconv_mem negative negative --- 

piracy_rate positive negative positive 

edu-ix negative negative positive 

lapXedu --- negative negative 

lapXpir --- negative negative 

lapXpirXedu --- positive positive 

* Shaded cells mark consistent results across different approaches. 
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larger, well-established corporations, rather than large numbers of small ISPs that are 

often shortlived and difficult to survey, let alone reach with collaborative or regulatory 

efforts.  

 

Stimulating ISPs to increase botnet mitigation presumes that ISPs have the discretion to 

step up such efforts. This is not self-evident. It is well-known that in retail ISP markets, 

competition is first and foremost driven by price. In many countries, price competition is 

fierce. Moreover, even if consumers cared about security, there are no adequate market 

signals that could reliably guide them towards more security-conscious ISPs. Most 

industry insiders lack such signals as well, except for the unreliable anecdotal evidence 

and speculative claims that are bandied around the security community about the 

performance of this or that ISP.  

 

If the behavior of ISPs is mostly driven by institutional incentives, outside the control of 

the individual ISP, then we would expect similar levels of performance in terms of botnet 

mitigation. Attempts to get ISPs to increase their efforts would first have to change that 

incentive structure. To get a sense of the discretionary power of ISPs to do botnet 

mitigation, we explored the extent in which they performed different relative to each 

other, in terms of the number of infected machines in their networks. We found that 

perfomance levels are highly dispersed. For ISPs of similar size, we found that the 

differences typically span two orders of magnitude – i.e., a hundred-fold difference. Even 

within the same country, we see differences of more than one order of magnitude for ISPs 

of similar size. In other words, external conditions do not dictate the ISPs‟ internal 

incentives and, hence, their efforts. Operating under comparable conditions allows for 

remarkable differences in performance.  

 

We developed a theoretical framework to explain the differences among ISPs and then 

empirically tested some of these explanations. We found that characteristics of the user 

base matter. Higher rates of using pirated software are associated with higher botnet 

activity. Higher average connection speeds are not. The level of education, as a proxy for 

technical competence, is associated with lower levels of botnet activity. We also found 

limited evidence to support the idea that governmental efforts to improve cybersecurity 

are related to lower levels of botnet activity – confirming earlier research Png and Wang 

(2007) and Wang and Kim (2009), though unlike the latter, we found no impact of the 

Convention on Cybercrime, once we took other factors into account. However, given the 

substantial variability among ISPs subject to one specific set of institutional incentives, 

such public policy measures, while possibly necessary conditions to enhance security, are, 

taken by themselves, not sufficient. 

 

Regarding the ISPs themselves, we found that average revenue per customer did not 

make a difference. So price may not be related to security performance. Market share of 

an ISP in its home country was not associated with worse performance either. We also 

tested the claim that large ISPs perform worse than smaller ones, because they are less 

subject to peer pressure (Moore et al. 2009). Our data suggests this is incorrect. In fact, 

we found support for the idea that large ISPs actually perform better than average, 

measured in number of sources and spam volume per subscriber). The reason that 
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industry insiders often claim the opposite may simply be an effect of repeatedly seeing 

the same names on the lists of worst offenders – in other words, of seeing the 50 or so 

ISPs that we also found as critical to the overal problem. However, those lists may fit 

nicely with anecdotal evidence, but they fail to take into account critical and obvious 

factors, such as the size of the customer base. One speculative reason why large ISPs 

actually do slightly better may be that their size forces them do introduce automation in 

incident response and abuse management. A similar mechanism may explain why we 

found that cable providers did slightly better than DSL providers. The management of 

cable networks often include automated systems and these technologies perhaps make it 

less costly to deal with infected machines. Given the ongoing advances in technology, 

including botnet mitigation solutions, the difference between cable and DSL may 

disappear in the immediate future. 

 

In sum: our study provides evidence that ISPs are critical control points and that even 

under current market conditions increased efforts to mitigate botnets appear possible. 

Current efforts to bring about collective action – through industry self-regulation, co-

regulation, or government intervention – might initially achieve progress by focusing on 

the set of ISPs that together have the lion‟s share of the market. Further work is needed to 

explore ways in which to strengthen the ISPs incentives to improve botnet mitigation. 
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Appendix 1: List of the countries and count of ISPs included the final dataset 

 
Code Country Name OECD status Number of ISPs  
AT Austria Member 3 
AU Australia Member 6 
BE Belgium Member 4 
BR Brazil Enhanced engagement 8 
CA Canada Member 9 
CH Switzerland Member 3 
CL Chile Candidate 5 
CN China Enhanced engagement 5 
CZ Czech Republic Member 4 
DE Germany Member 13 
DK Denmark Member 3 
EE Estonia Candidate 2 
ES Spain Member 6 
FI Finland Member 4 
FR France Member 5 
GB United Kingdom Member 8 
GR Greece Member 3 
HU Hungary Member 6 
ID Indonesia Enhanced engagement 2 
IE Ireland Member 7 
IL Israel Candidate 3 
IN India Enhanced engagement 6 
IS Iceland Member 2 
IT Italy Member 4 
JP Japan Member 6 
KR South Korea Member 4 
LU Luxembourg Member 1 
MX Mexico Member 5 
NL Netherlands Member 6 
NO Norway Member 5 
NZ New Zealand Member 4 
PL Poland Member 5 
PT Portugal Member 4 
RU Russia Candidate 10 
SE Sweden Member 4 
SI Slovenia Candidate 5 
SK Slovakia Member 2 
TR Turkey Member 1 
US United States Member 15 
ZA South Africa Enhanced engagement 2 

TOTAL 40  200 
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Appendix 2: Data and data sources 

 
Category Variable Description Source 

Dependent 
variables 

unq_srcs 
 

Number of unique IP sources emitting spam from an ISP during a specific 
time period. 

Processed spam 
trap data 

spam_msgs 
Total number of spam messages (spam volume) emitted from an ISP 
during a specific time period. 

unq_srcs_sub 
Unique sources per subscriber. Similar to unq_srcs, but corrected for size 
of the ISP  

spam_msgs_sub 
Spam messages per subscriber. Similar to spam_msgs, but corrected for 
size of the ISP 

Independent 
variables 

total_subs Total number of subscribers of an ISP (retail, business, DSL, cable, etc)  

TeleGeography 
GlobalComms 

srv_type 
The type of service / access provided by the ISP: DSL, cable, or both. 
A variant of this variable is srv_cable (1 if ISP provides cable access). 

rev_per_sub Revenue of the ISP (wireline section) divided by its subscriber count. 

int_bpp 
International Internet bandwidth, per person, in the country the ISP 
operates in (measured in bits per person). 

World 
Development 
Index bb_subs 

Number of broadband Internet subscribers in the country the ISP 
operates in. (this variable is used indirectly, in calculating market_share) 

lap_mem 
Is the country in which the ISP is located, a member of the London Action 
Plan? Own 

construction 
cyberconv_mem 

Has the country in which the ISP is located, signed the convention on 
cybercrime? 

piracy_rate Percentage of software that is pirated in the country the ISP operates in. 
Business 
Software 
Alliance 

educ_ix 
Education index: an index indicating the overall education level of people 
in the country that the ISP operates in. 

UN Human 
Development 
Reports 

market_share Local market share of the ISP (total_sub divided by bb_subs) 
TeleGeography 
GlobalComms  

Mappings 

ASN-to-AS-name Mappings of Autonomous System numbers to names WHOIS 

AS-name to ISP Mappings of ASNs to the ISPs (i.e., which ISP owns which ASN) 
Own 
construction 

ASN to country Mappings of IP addresses to countries (IP location) MaxMind GeoIP 
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Appendix 3: Descriptive statistics 

 

    Variable |       Obs        Mean    Std. Dev.       Min        Max 

-------------+-------------------------------------------------------- 

    unq_srcs |       741    185324.9    504712.2         20    5904500 

  src_persub |       741     .191359    .2107284      .0001     1.1329 

   total_sub |       741     1374231     3369101       3000   4.43e+07 

market_share |       709    .1820523    .1988902      .0005     1.2358 

  rev_persub |       194    4305.685    5135.762   182.1285   42768.34 

-------------+-------------------------------------------------------- 

   srv_cable |       665    .3233083    .4680914          0          1 

     lap_mem |       741     .562753    .4963815          0          1 

   cyber_mem |       741    .7098516    .4541373          0          1 

 piracy_rate |       740    40.35135    17.31936         20         87 

     educ_ix |       741    .9440931    .0671315       .632       .993 

-------------+-------------------------------------------------------- 

     int_bpp |       386    14345.77    16918.11   190.8559   92832.46 

   spam_msgs |       741    4.53e+07    1.10e+08       7679   1.54e+09 

 spam_persub |       741    55.57274    79.03818      .1697   830.8522 
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Appendix 4: Pair wise correlations between the independent variables 

             | total_~b market~e rev_pe~b srv_ca~e  lap_mem cyber_~m piracy~e 

-------------+--------------------------------------------------------------- 

   total_sub |   1.0000  

market_share |   0.2530   1.0000  

  rev_persub |  -0.1149   0.1907   1.0000  

   srv_cable |  -0.0958  -0.2110  -0.2721   1.0000  

     lap_mem |   0.1519  -0.1900  -0.1078   0.0922   1.0000  

   cyber_mem |  -0.0729  -0.0887   0.0188   0.0738   0.1498   1.0000  

 piracy_rate |   0.0849   0.1284   0.1344  -0.0942  -0.3513  -0.6066   1.0000  

     educ_ix |  -0.0835  -0.0793  -0.2180   0.1317   0.3184   0.4939  -0.6068  

     int_bpp |  -0.0527  -0.0759  -0.1881   0.0046   0.2420   0.4757  -0.5176  

 

             |  educ_ix  int_bpp 

-------------+------------------ 

     educ_ix |   1.0000  

     int_bpp |   0.3476   1.0000  
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